Carbon dioxide is a greenhouse gas: a gas that absorbs and radiates heat. Warmed by sunlight, Earth’s land and ocean surfaces continuously radiate thermal infrared energy (heat). Unlike oxygen or nitrogen (which make up most of our atmosphere), greenhouse gases absorb that heat and release it gradually over time, like bricks in a fireplace after the fire goes out. Without this natural greenhouse effect, Earth’s average annual temperature would be below freezing instead of close to 60°F. But increases in greenhouse gases have tipped the Earth's energy budget out of balance, trapping additional heat and raising Earth's average temperature.
Carbon dioxide is the most important of Earth’s long-lived greenhouse gases. It absorbs less heat per molecule than the greenhouse gases methane or nitrous oxide, but it’s more abundant and it stays in the atmosphere much longer. Increases in atmospheric carbon dioxide are responsible for about two-thirds of the total energy imbalance that is causing Earth's temperature to rise.
Another reason carbon dioxide is important in the Earth system is that it dissolves into the ocean like the fizz in a can of soda. It reacts with water molecules, producing carbonic acid and lowering the ocean's pH. Since the start of the Industrial Revolution, the pH of the ocean's surface waters has dropped from 8.21 to 8.10. This drop in pH is called ocean acidification.
A drop of 0.1 may not seem like a lot, but the pH scale is logarithmic; a 1-unit drop in pH means a tenfold increase in acidity. A change of 0.1 means a roughly 30% increase in acidity. Increasing acidity interferes with the ability of marine life to extract calcium from the water to build their shells and skeletons.